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ABSTRACT
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The near-wall region of a turbulent flow is investigated in the limit

of large Reynolds numbers. When low-speed streaks are present, the govern-

ing equations are shown to be of the boundary-layer type. Physical pro-

cesses leading to local breakdown and a strong interaction with the outer

region are considered. It is argued that convected vortices, predominantly

of the hairpin type, wil] provoke eruptions and regenerative interactions

with the outer region.

1. Introduction

Most flows occurring in engineering practice are turbulent and at high

Reynolds number. The study of the dynamics of turbulent boundary layers is

therefore an important area of basic research. However, analysis is ex-

tremely difficult due to the complex unsteady environment which contains

a rich mixture of scales and three-dimensional vortex structures; the vor-

tices interact wlth one another and with the viscous flow near solid walls.

The Interaction with the near-wall flow is the fundamental process of tur-

bulence production whereby the turbulence is sustained. The wall layer is

observed to erupt intermittently, at isolated streamwise and spanwise loca-

tions, in an event usually referred to as bursting. In this process new

vorticity from the wall is abruptly introduced into the outer region of the

boundary layer. In a turbulent boundary layer, the only source of new vor-

ticity is the wall and thus the important issues of regeneration are neces-

sarily related to the surface interaction. The nature of th_s interaction

and the physical processes involved are the subject of thls paper.

The mean turbulent boundary layer is double-structured consisting of:

(1) an outer layer where the balance in the mean equations is between con-

vection and Reynolds stress, and (2) an inner wall layer having constant

total stress, where viscous and Reynolds stress terms balance and the con-

vective terms are not Important to leading order. A significant conse-

quence of the observed I coherent structure of the near-wall region (see

Walker et al 2 and the references therein) is that the mean normal length

scale is also appropriate for the time-dependent flow over relatively long

periods of tlme. For a given area of the surface, the wall layer will be

observed to be in a relatively quiescent state for a large majority of the

total observation timel, 2. During this quiescent period, the low-speed

streaks can be observed, the flow is relatively well-ordered and strong

interactions wlth the outer region do not occur. In this state, the wall

layer Is a relatively thin viscous region and may be regarded as a develop-

ing unsteady flow, driven by the pressure field at the base of the outer

region. Indeed, a plausible cause of the wall-layer streaks is that they

are the signature of convected hairpin vortices 2,3,4.

The relatively long periods of ordered flow are interrupted on a highly

intermittent basis at isolated locations by the bursting phenomenon. The
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event invariably initiates near a wall-layer streak 2 and is characterized

by an abrupt and highly localized eruption of wal1-1ayer fluid. The pro-

cess may be classified as a strong unsteady viscous-lnvlscid interaction or

equivalently, as a local breakdown of the wall-layer flow. During the rela-

tively short period of breakdown, the two regions of the boundary layer

interact strongly and the double structure of the layer is briefly obliter-

ated. In the process, new vorticity from the wall is abruptly introduced

into the outer region. A double structure is quickly restored locally

with the sweep event, in which high speed outerTreglon fluid penetrates

close to the wall following the burst; the low-speed streaks appear again

and locally a new quiescent state begins.

A central questlon relates to what dynamical features cause the local

breakdown of the wal1-layer flay. The most productive theoretical appreach

is to identify cause and effect relationships in the limit of large Reynolds

numbers, for several reasons. First, most practical flows occur at high

Reynolds numbers and it is desirable to construct an asymptotic description

which represents the phenomena over a range of Reynolds numbers. Secondly,

the structure of high speed compressible turbulent flows is expected to be

similar to the well-studied incompressible case; detailed experimental stu-

dies become progressively more difficult with increasing flow speed and a

knowledge of the dominant dynamical mechanisms at high Reynolds number pro-

vides the basis of an extension to high Mach number flows. The theoretical

task is difficult since most of the experimental work is in a limited Rey-

nolds number range; in addition, the complexity of the unsteady environment

suggests a multltude oF different physical cause and effect relationships.

The task in constructing an asymptotic description is to isolate the scales

and dominant processes at high Reynolds numbers. Direct simulations of

turbulent flows are less helpful in this objective than detailed experimen-

tal studies; simulations are currently restricted to relatively low Rey-

nolds numbers and seem to lack the numerical resolution and methodology to

adequately describe the eruptive phenomena of interest here. In the next

section, the scaled variables describing an evolving quiescent wal]-layer

flow are developed.

2. The Wall Layer Problem

Consider a nominally steady two-dimensional boundary layer and let

u_(x) be the local mean friction velocity. During a typical quiescent

period, the wall layer is well-defined and the low-speed streaks are pres-

ent; all three velocity components are O(u_) and the characteristic length

in the spanwise direction is _, the mean streak spacing. First define a

scaled coordinate and velocity in the spanwise direction by

Z = u zl(k+v) = zl_ , W = wl(uWl) , (I)

where _+ Is observed 5 to have a value of about 100; here _ is the kinematic

viscosity and WI is a constant, such that W1u T is equal to the average mag-
nitude of the spanwise velocity near the outer edge of the wall layer during

a typical qulescent state. Measurements of the intensity w--_ for large y+

(y+ = 40-100) indicate an average value of WI of about 2. The scaled normal

velocity and distance from the wall are defined by

Y = uTy(W II_ +)½1,_ = y+(wIA+)½ , v = v(_+lWl)½1uT , (2)

which follow from balancing: (I) _v/ay and _w/3z in the continuity equation

and (2) the convective operator v_/ay with the viscous operator va2/ay 2 in

the momentum equations. A scaled streamwise coordinate and velocity are



defined by

x = x/L x , U = u/(UlU T) (3)

Here Lx Is the characteristic length in the streamwise direction, whose

value will be discussed subsequently; U I is a constant such that U1u T is a
typical average flow speed In the streamwise direction near the outer edge

of the wall layer during the quiescent period. Typical U I values of 13-16

can be estlmated from the law of the wall for y+ = 30-100 and consequently

U I is generally considerably larger than W I. The time scale follows from
a balance between the time derlvatlve and normal viscous diffusion terms

and let

T : uT2tW1/(vX+) = t+Wll_+ .

Finally the pressure may be written as

(4)

p : p_(x) + PUT2UI 2PI + PuT2UIWIP2/X+ + -.. , (5)

where p_(x) is the mainstream pressure and p is the density. Upon substi-

tution in the continuity equation, it is easily shown that

Re
x

aU + aV _W
aX _ + TZ = 0 . (6)

Here Rex, a streamwise Reynolds number, and the parameter y are defined by

= k+Ul/W IRe x U_Lx/V , Y = • (7)

SubstitutTon in the Navier-Stokes equations yields

aU+ Y_X._ U aU au 3u x+ _P aP2
Re x _ + V _ + W _ = UIWI p+ Y 1 1Re x _X Re ax

X

+ y a2U + _a2u + 1 a2u (8)

UlRex2 ax 2 By2 Re_ aZ 2 '

av + y BV BV 8V BPI _P2
RTU TX'+ V'ay"+ w a"z: "'(Ul aY Ul _Y

X

+ y a2V + _a2v + l a2v (9)

UlRex 2 aX 2 ay2 Re_ aZ 2 '

aW +Y--=- U aw aw aw
8_ Re T_-+ v "_-+ w_=az

X

U12 aP1 UI 8P2

2 8Z Re_ az
W I

+ .__y__a2__yw+a2__y.w+1 a2w (to)
U1Rex2 _X 2 ay2 Re X aZ 2 "

Here p+ is the scaled mainstream pressure gradient defined by



p+ = -v(dp_/dx)/(puT3) , (II)

and Re X Is a spanwise Reynolds number defined by

Re X : W/k+ = WlU k/_ . (12)

This completes the formulation with a minimum number of assumptions. Length

and velocity scales consistent with experiment have been introduced to

describe a developing wall-layer flow containing low-speed streaks. The

objective now is to isolate the type of disturbance which can induce a

local wall-layer breakdown and interaction with the outer flow. In the

next two sections, several limit problems are considered, all for large

streamwise Reynolds number Re x.

3. The Long Wave Limit

Consider first the limit

+ _ (y/Re x ) + 0 , (13)Re x

which implies from equation (7) that (UIX)/(WIL_)<<I. Thus motion of rela-
tively long streamwise extent with respect to t_e streak spacing is of

interest. It is easily verified that in this limit, equations (6), (9) and

(10) involve only the flow components (V,W) in the cross-flow plane. The

streamwlse vortlclty develops independently in the YZ plane and the solu-

tion for V and W then feeds into equation (8), thereby influencing the

evolution of U. Solutions of the long wave equations have been considered

by Walker and Herzog G subject to the boundary conditions

W = V = 0 at Y = 0 , W + -sin(2_Z) as Y ÷ _ . (14)

This is the slmplest external condlt[on which leads to the representative

flow structure depicted in figure I. A similar set of equations have been

studied by other authors 7,8, with the exception that a periodic time-

dependence was assumed in W at large Y; in these studies, the spanwise velo-

city for large Y reverses direction during the interval under consideration.

The outer condition (14) is similar to that imposed by a moving hairpin vor-

tex on the flow near the wallg; it represents a persistent pumping action

at the outer edge of the wall layer and is therefore believed to be a more

realistic external condition.

In the limit (13) equations (8), (9), (10) contain the Reynolds number

Rex; with average values of k+=100, WI=2 , a typical value of Re X is 200.

Walker and Herzog 6 have obtained numerical solutions over a range of Rex,

using an abrupt imposition of (14) at the start of a typical quiescent

state; two routes to breakdown of the flow structure depicted in figure I

were identified. The first occurs in situations where the spanwise velo-

city at the wall-layer edge produces a relatively strong pumping action, so

that WI, and hence Re_, is large. In such cases, the adverse pressure

gradient due to (14) causes the development of recirculatlng flownear Z=0;

the evolution in the cross-flow plane is then similar to known examples of

vortex-induced separation I0. Violent updrafts begin to evolve near the

recirculating flow, in a region which becomes progressively narrower as the

wall layer focuses toward an eruption. This unsteady separation effect

will occur whenever a hairpin vortex is close to the wall and/or has a

reIat|vely large strength, thus giving rise to elevated levels of W I. As

the strength of the pumping action is decreased (and with it Rek),



recirculations do appear in the cross-flow plane but the tendency toward

a focussed eruption gradually diminishes; at low enough Rex, the (V,W)

motion evolves toward an apparently steady state. However, the streamwise

velocity profiles were observed 6 to develop a strong inflectional charac-

ter near the center of the recirculatlon in the cross-flow plane; the con-
figuration is expected to be highly unstable and to breakdown. This is the

second physical process which can lead to the destruction of the assumed

flow structure depicted in figure I. Finally at sufficiently low values

of Rex, cross-flow separation or inflectional streamwise profiles do not

develop. The overall implication of these results 6 is that a sufficiently

large level of imposed spanwise velocity at the wall-layer edge is required

to produce a breakdown of the structure shown in f_gure I.

4. The Full Three-Dimensional Problem

Now consider the limits

_ (_r/Rex) = o(I) , (15)Re x

and without loss of generality Lake y=Rex; this is equivalent to selecting

the characteristic strearmqise length according to

Lx = UI_IW l • (16)

Using the typical values of U I and WI, equation (16) suggests a character-

istic streamwise dimension of 6 to 8 times the spanwise streak spacing,

which is consistent with observationl, 2. It now follows from equation (8)

that aPI/_Y = O(Rex -I) and therefore P1 = P] (X,Z,T)" Equations (8), (10)

and (6) become, respectively

aU + U 3U _U aU X+p + _ aP1a-Y" "_" + v -_- + w -- : a2u
BZ UIW I a--X-+ _ +ay 2

1 _2U

Re X _Z 2 '
(17)

a._WW+ U aW _W aW U12 aPl
3T _+ V _-+ W--= a2W I _2W

_y2 Re X aZ 2 'aZ W12 _Z + + (18)

3U + aV aW
a-X" 7 + _ = 0 . (19)

With P] assumed known from a specified disturbance flow in the outer region

(as well as U and W for large Y), it is evident that equations (17)-(19)

are of the boundary-layer type. Once again Re X appears as a parameter and

solutions can be considered over a range of Re k. Note that in the limit

Rex-_°, equatlons (17)-(19) give the three-dimensional "laminar boundary-

layer equations". An important consequence of this section is that distur-

bances which induce eruptions in laminar flows will also (when properly

scaled) have the same effect on the turbulent wall layer. Recent computa-

tional and experimental studies3,4, 11 strongly suggest that the dominant

disturbance near the wall in a turbulent boundary layer is the convected

hairpln vortex. In the next section the general effects of convected vor-
tex motion are discussed.

5. The Effects of Moving Vortices

In §3 and §4, it has been demonstrated that during the quiescent period

the leadlng-order wall-layer equations are of the boundary-layer type; the



pressure, as well as the external spanwiseand streamwisevelocity distri-
butions drive the motion therein, until ultimately an interaction is in-

duced with the outer flow. The question now is what type of convected dis-

turbance can induce an eruption of the wall layer and what are the relevant

dynamics? It is argued elsewhere g'll that the principal dynamical feature

is the hairpin vortex. To understand the effects of such a vortex, it is

worthwhile to review some aspects of vortex motion.

As a consequence of a number of fundamental studies, it has been pos-

sible to identify the general effect of a moving vortex on a viscous flow

near a wall. These studies include two-dimenslonal vortices in an otherwise

stagnant flow above a wall I0, vortices convected in a uniform flow 12, counter-

rotating vortex pairsI3, I_, vortex rings and loops near a surface 15'16 and

moving hairpin vortlces 3'_'II As each vortex convects near a solid sur-

face, a variety of complex unsteady flow patterns is induced in the viscous

flow near the wall. However, a common feature is that a vortex always im-

presses a region of adverse pressure gradient on the near-wall flow, which

u]timately provokes an eruption. Consider the configuration shown in figure

2(a) where a portion of a three-dimensional vortex is in motion above a

wall. In figure 2(b) the local detail in a plane normal to the vortex core

is depicted. For the indicated sense of rotation, a region of deceleration

occurs upstream; this is followed by a zone of acceleration and adverse pres-

sure gradient behind the vortex. In a frame of reference moving wlth the

vortex (at x=O), a sketch of the pressure gradient induced near the wall

is shown in figure 3. The critical aspects are: (I) the distance of the

vortex center a from the wall; (2) the vortex strength < and (3) the vortex

Reynolds number Rv = 2_/v. The size of the vortex core plays no signifi-

cant role in the nature of the induced flow near the wall. For large vor-

tex Reynolds numbers, the viscous flow near the wall is only able to with-

stand the action of the adverse pressure gradient for a finite period of

time. In most situationslO, 15 a secondary reclrculating eddy evolves in

the near-wall flow with the opposite sense of circulation to the parent vor-

tex. The important consequence is a blocking effect which develops as the

near-wall flow is forced to flow up and over the secondary eddy, under the

continued action of the external pressure gradient. Strong updrafts then

develop on the upstream side of the secondary eddy causing a violent outflow

from a zone that is narrow in the streamwise direction. In the latter

stages of the process, the near-wall focuses into an explosively growing

needle-like region I0 containing relatively high levels of vorticity. At

this point, the near-wall flow erupts and a strong unsteady viscous-lnvlscid

interaction ensues, culminating in the ejection of fluid from the wall re-

gion. The pressure response near the wall becomes quite complex as the

interaction develops and a typical behavlor in the pressure gradient is

sketched as a broken line in figure 3, near the point of eruption17, 18.

For high Reynolds numbers, it is essentially impossible to resolve this

phenomena using a conventional Eulerlan description. The location where

the eruption will occur is not known a priori; moreover due to the focusing

nature of the phenomenon it is not possible to resolve the event using a

mesh which Is fixed In space. Recent progress in the development of

Lagrang|an algorithms to compute such flows is described by Peridier, Smith
and Walker !0

The period required to induce an eruption for a given vortex is O(</a);

thus an eruptive response occurs sooner for a stronger vortex and/or the

closer the vortex is to the wail. Experiments 15 clearly show an eruptive

response persists over a wide range of high Reynolds numbers and at least

as low as Rv=104; note that it is not a kinematlcal effect but an abrupt

dynamical event which results in the d_screte ejection of near-wall fluid.



AlthoughaT] vortices carry the pressure signature that canprovide an
eruption, it is often argued9'II that hairpin vortices are the principal
feature of turbulent flows near walls, for a varTety of reasons. Hairpin
vortices are low-speedstreak creators3,II and are able to reproducethem-
selves. A schematicdiagramof symmetricandasymmetrichairpin vortices
is shownin figure 4. Thesymmetrichairpin vortex is the simplest mathe-
matical model,although mosthairpins in the turbulence will be asymmetric.
Thereare two features of hairpin vortices which lead to their persistence
in the flow. First, calculations show9 (andexperimentsconfirmIf) that
hairpins interact with a backgroundshear flow to producenewsubsidiary
vortices to the side of the original hairpin vortex (see figure 4); in this
mannerthe hairpin is able to multiply itself in the lateral direction.
Secondlythe vortex legs moveprogressively toward the wall as the vortex
convects in a shear flow near the wall, thus hastenin? an eruptive response.
Recentcomputationsandwell-controlled experTmentsg,_I definitively show
this occurs; in the region of adversepressure gradient behind the vortex
headand betweenthe vortex legs, the creation of secondaryhairpin vor-
tices takes place through a viscous-invTscld interaction with the near-wall
flowII The process occurs after the vortex has convected over the wall

for period of time and is characterized by a rapidly rising, narrow plume

from the wall region; the plume then rolls over into a well-defined secon-

dary vortex II

6. Discussion

It has been argued that the equations governing the evolving wall-

layer flow are of the boundary-layer type. To expiain the production pro-

cess Tn the near-wall region, it is necessary to isolate physicai phenomena

that lead to a strong interaction with the outer flow and which, in the pro-

cess, destroy the local structure of the wall iayer. Convected vortex motion

above the wall layer (which is predominantly of the hairpin type) provides

a moving zone of adverse pressure gradient. Note that the outer edge of

the wall layer is not at some fixed value of y+. Rather the boundary bet-

ween the wall layer and outer region changes continually. In a sweep, the

outer region penetrates close to the wall; conversely during a quiescent

period the wall layer thickens continuously. When the vortex is strong

enough and/or close enough to the wall an abrupt eruption will be produced;

on the other hand, weaker disturbances can provoke an instability in the

wall layer 6. In either case, a local breakdown of the relatively well-

ordered walT-layer flow occurs.

Finally, it is of interest to obtain an order of magnitude estimate

of the period between bursts. For either the long wave problem dTscussed

Tn §3 or the full three-dimensional problem described in _4, theoretical

investigations I0'12'13 suggest that a moving disturbance, which imposes an

0(I) adverse pressure gradient on the wall layer will provoke an eruption

for T=O(1); it follows from equation (4) that thTs occurs for t=O(_+/(u_2Wl))
and consequently

TB+ = O(2+/W I) (20)

The typical values give (%+/WI):50 , which is of the same order as measured 2

values of TB+=110. As with most order of magnTtude arguments, the esti-

mate is not precise; however, it may be used to obtaTn a value for the char-

acteristic length in the streamwise direction. Consider a convected vortex

moving with speed O(UIUT) at the outer edge of the wall layer; the mean

time between bursts is TB+U/u% 2 and may be regarded as the time required

for the vortex to provoke an eruptTon. In this time period, the vortex



travels a distance Lx which maybe adoptedas the characteristic streamwise
length and

= Ulu (TB+V/u 2) (21)L x

Using equation (20), it follows that Lx=O(_UI/W I) in agreement with equation

(16).
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